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Abstract

The massive spread of social networks provided a plethora of new possibilities
to communicate and interact worldwide. On the other hand, they introduced
some negative phenomena related to social media addictions, as well as addi-
tional tools for cyberbullying and cyberterrorism activities. Therefore, moni-
toring operations on the posted contents and on the users behavior has become
essential to guarantee a safe and correct use of the network. This task is even
more challenging in presence of borderline users, namely users who appear risky
according to their posts, but not according to other perspectives.

In this context, this paper contributes towards an automated identification
of risky users in social networks. Specifically, we propose a novel system, called
SAIRUS, that solves node classification tasks in social networks by exploiting
and combining the information conveyed by three different perspectives: the
semantics of the textual content generated by users, the network of user re-
lationships, and the users spatial closeness, derived from the geo-tagging data
associated with the posted contents. Contrary to existing approaches that typ-
ically inject features built from one perspective into the other, we learn three
separate models that exploit the peculiarity of each kind of data, and then learn
a model to fuse their contribution using a stacked generalization approach.

Our extensive experimental evaluation, performed on two variants of a real-
world Twitter dataset, revealed the superiority of the proposed method, in com-
parison with 13 competitors based on one of the considered perspectives alone,
or on a combination thereof. Such a superiority is also clear when specifically fo-
cusing on borderline users, confirming the applicability of SAIRUS in real-world
social networks, which are potentially affected by noisy data.
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1. Introduction1

In the globalized world we live in, social networks play a central role in con-2

necting people, due to the possibility to share news about our lives and to express3

our opinions. Indeed, by performing common actions such as writing a post,4

adding a like to comments and photos, or following the updates of influencers,5

users can establish new relationships, share ideas, beliefs, and preferences, or6

discuss about specific topics and events.7

The ubiquity of social networks inspired the scientific community, which over8

time analyzed several aspects of this phenomenon. In particular, Social Network9

Analysis (SNA) processes have been widely used to exploit the relationships and10

the information flows among users in the network [1]. Using SNA approaches,11

social networks may be exploited for several goals, ranging from advertising12

interesting products to specific users [2], to understanding the political debate13

of voters and their polarization near the elections [3, 4]. In this context, our14

goal is to analyze social networks to identify the so-called risky users, namely15

users who exploit the spreading power of social networks to perform and incite16

bad or illegal activities, including the use of drugs, the embracement of religious17

or political extremism, and the hate towards women or disabled people [5, 6, 7].18

The identification of risky users may therefore be fundamental to promptly19

suspend suspicious accounts and stop such activities [8, 9, 10, 11].20

From a methodological viewpoint, the identification of risky users can be21

framed as a node classification task. Multiple approaches have been proposed in22

the literature to solve node classification tasks, that mainly fall into three main23

categories: content-based approaches, topology-based approaches and hybrid24

approaches. The first category relies on the analysis of the content generated by25

users [12, 13, 14, 15]. Conversely, topology-based approaches take into account26

only the relationships between the users [16, 17, 18, 19]. A possible relationship27

in the network may represent, for example, a user who follows the updates/posts28

of another users, a user who likes the content shared by another users, or a user29

who comments a post shared by another user.30

In the context of the identification of risky users, both the approaches may31

encounter issues in the classification of borderline users. A typical example32

of such users is represented by journalists. Indeed, they may usually publish33

posts containing unsafe words, increasing the chance of misclassifications for34

content-based approaches. Similarly, they may establish mixed relationships35

with both safe and risky users. In such a scenario, if the relationships with the36

safe users are not predominant, topology-based approaches would erroneously37

classify journalists as risky users. Solving these issues is the goal of hybrid38

approaches [20, 21], that try to combine the approaches falling in the first two39

categories to exploit their strengths and possibly alleviate their weaknesses.40
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It is noteworthy that the massive adoption of social networks is also due41

to the possibility to interact with them using mobile devices (i.e., smartphones42

and tablets). Most of the mobile devices integrate geolocation mechanisms,43

based on GPS sensors, accelerometers, and magnetometers. When a new post44

or image is shared, provided that the necessary permissions have been granted45

by the user, additional personal information are linked to the content loaded on46

the social network, thus generating geotagged data. However, to the best of our47

knowledge, existing approaches are not able to consider the information possibly48

conveyed by the geographical position of the users, that implicitly establish49

additional relationships among them.50

In this paper, we aim to fill this gap. Specifically, we propose SAIRUS, a51

hybrid user risk identification framework, capable to consider not only the con-52

tent generated by the users and their relationships in the network, but also the53

spatial dimension through their geographical position. The goal is to possibly54

improve the performance of the learned node classification models and the ro-55

bustness to the presence of borderline users, by exploiting the spatial closeness56

among users.57

SAIRUS learns three different node classification models (one for each per-58

spective to consider), which are finally fused to get the final, possibly more59

robust, user risk classification model, based on the stacked generalization frame-60

work [22]. As regards the content, we learn a word embedding model and exploit61

the embedded content to train two autoencoders specialized in recognizing safe62

and risky users, respectively. As regards the user relationships and spatial close-63

ness, we extract two separate embeddings representing topological and spatial64

information, and train two different classifiers on top of the learned represen-65

tations. Contrary to existing hybrid approaches that are usually based on the66

injection of artificially-defined features related to one perspective into the oth-67

ers [23, 24, 25], the approach adopted by SAIRUS allows us to focus separately68

on the three different perspectives and learn a final classifier that ultimately69

combines their contribution.70

The remaining of the paper is organized as follows: in Section 2 we briefly71

discuss some related work; in Section 3 we describe the details of the proposed72

framework; in Section 4 we describe the results of our experimental evaluation;73

finally, in Section 5 we draw some conclusions and outline possible future works.74

2. Background75

A social network is commonly seen as a virtual square where users share their76

thoughts and ideas, even if the concept of social network existed long before the77

massive diffusion of Web 2.0. The first studies about Social Network Analysis78

(SNA) stem from sociology [26] and aim to analyze social relationships between79

people. Starting from the 1990s, it has been applied to several fields including80

Physics, Political Science, Biology, Psychology, or Economics. SNA is strongly81

coupled with graph theory, through which it abstracts the human relationships82

using nodes and links. Specifically, each node in the network represents an83
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actor, i.e., a person or an organization, while links represent social relationships84

between the actors [27].85

Nowadays, SNA is exploited to support many scenarios, including critical86

situations in the context of the homeland security. Some relevant examples in-87

clude the analysis of the spread of the COVID-19 pandemic [28], the investiga-88

tion of the mechanisms that trigger macro-level international migration patterns89

[29, 30], the analysis of the euroscepticism in the British Parliament before the90

vote for the Brexit [31], or the prediction of Bin-Laden’s replacement as head91

of al-Qaeda [32]. SNA can also be applied in the counter-terrorism field. For92

example, in [33] the authors stated that SNA can be considered a powerful93

tool for the analysis of terrorist and criminal networks, since it can effectively94

be adopted to support many crucial tasks including key-player identification95

[34, 35] and link analysis [36, 37].96

As already mentioned in Section 1, the goal of the proposed method SAIRUS97

is to identify risky users, i.e., users who negative influence the community98

through their actions in the social network. This kind of task falls in the key-99

player identification category and can be practically solved by resorting to node100

classification approaches. For this reason, in Section 2.1 we briefly discuss101

existing methods aiming to solve user classification tasks in social networks.102

Moreover, since our method specifically exploits the spatial dimension, in Sec-103

tion 2.2 we introduce some existing spatially-aware approaches that generally104

work on network data.105

2.1. User classification in social networks106

The general goal of the user classification task in social networks is to assign107

a category or a label to each user. As mentioned in Section 1, existing methods108

can be categorized in three main categories: content-based, topology-based, and109

hybrid approaches, depending on the type of information they use.110

A relevant example of content-based methods can be found in [38], where111

the authors propose a method that exploits sentiment analysis. Starting from112

tweets, a NLP preprocessing pipeline is applied and a sentiment score is calcu-113

lated for each meaningful word. Finally, a decision tree is learned to assign a114

category to each user between positive, neutral, and negative. In the context115

of content-based methods, the adoption of Word2Vec [39] and Doc2Vec [15] is116

also very common. Both methods allow to learn an embedding numerical space,117

where each textual document is represented. They have a different granularity:118

Word2Vec naturally returns a numerical vector for each word, bringing out la-119

tent semantic meanings and relationships among words (such as synonymy or120

polysemy); on the other hand, Doc2Vec focuses on entire paragraphs (or doc-121

uments). In both cases, the obtained numerical representation of the text can122

be subsequently used for any downstream task, such as classification. Relevant123

examples of works exploiting this pipeline can be found in [12, 40, 41].124

Considering the specific case of detecting risky users, Hee et al. [42] focused125

on the detection of cyberbullying content in social media texts. In particular,126

their system can recognize blasphemies or defamation. After a NLP-based pre-127

processing phase, they extract vectors of features from the tweets exploiting128
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n-gram bag-of-words and topic modeling algorithms like Latent Dirichlet Allo-129

cation [43]. In the last step they learn a linear support vector machine classifier,130

that shows good results on English and Dutch datasets. In a similar context,131

in [14] authors combined classical weighting schemes, like TF-IDF or binary132

weighting, with fuzzy sets, creating a fuzzy set-based weighting method for the133

detection of cyber terror and extremist content.134

Focusing on topology-based methods, we can mention the system GNetMine135

[16], a graph-based transductive classification approach, which can also model136

heterogeneous information networks consisting of multiple types of nodes and137

links. Other topology-based methods solve node classification tasks by resorting138

to collective inference [44, 45, 46], which consists in taking concurrent decisions139

on the label of every nodes, rather than classifying each node separately. Due140

to its nature, if a collective inference model is trained on a noisy dataset (i.e., a141

dataset containing weak or wrong relationships), misclassification of unlabeled142

nodes are propagated to nodes in their neighborhood, generating a domino143

effect. Focusing on this issue, in [47] the authors proposed an active inference144

method capable to identify a portion of the misclassified network and correct145

the label of nodes, improving the classification results. Analogously, in [48] the146

authors proposed to weight the relationships between existing nodes by counting147

the number of connections through each of them. The authors showed that this148

approach is particularly useful to avoid weak relationships from influencing the149

final node classification. Finally, it is worth mentioning the work in [18], where150

the authors solved a within-network classification task on a partially-labeled151

network. This is a challenging scenario, in which relational learning is combined152

with semi-supervised learning to enhance the classification performance in a153

sparse network. In particular, the authors exploited the so-called ghost edges,154

i.e., artificially-introduced edges between every labeled node and the unlabeled155

node to classify. Each ghost edge is weighted with a proximity score, calculated156

exploiting random walks with restart. Finally, labels are propagated through157

the ghost edges, taking into account the calculated weights.158

As for hybrid methods, a first attempt to combine both content and network-159

derived information was proposed in [49], where the authors analyzed a network160

composed by nodes representing users and hashtags to learn a classifier that is161

able to distinguish between verified and unverified users. A link between two162

nodes represents the fact that a user mentions another user, or uses an hash-163

tag. The authors proposed to build a set of features from both the constructed164

network and the textual content, that is subsequently exploited to train a deci-165

sion tree. However, the adopted representation is not able to take into account166

typical relationships of social networks, such as friends or followers.167

In [50], a framework to automatically recognize rebel users in social networks168

was presented. The authors combined features extracted from both the content169

and the user profile, along with features extracted from a semantic user graph170

constructed over the content. The graph transforms the tweets into a structure171

similar to an ontology. Here, the semantics of the tweets is made explicit through172

the links connecting the subject word with the object word, traversing the verb.173

It is important to note that the mentioned hybrid methods combine the174

5



features from both the user profile and the user-generated content, possibly175

adopting a network/graph as a proxy, but they do not analyze directly the176

network structure established by the relationships among users.177

Among more complex approaches, naturally able to work with heterogeneous178

attributed networks, it is worth mentioning the system HENPC [51] which is179

able to classify multi-type nodes exploiting overlapping and hierarchically orga-180

nized clusters. In the same line of research, MrSBC [52] and its ensemble-based181

variant MT-MrSBC [53], consider both the attributes and the relationships182

between the nodes, exploiting the näıve Bayes classification method in the mul-183

tirelational network setting. Contrary to [49] and [50], the methods [51, 52, 53]184

are more tailored for the analysis of the network structure and, although each185

node can be associated to attribute values, these methods are not able to explic-186

itly consider the semantics of the textual content. Specifically, in heterogeneous187

networks, nodes might represent users, posts, or single words. Therefore, the188

user-generated content is represented through the relationships between nodes189

of type user and nodes of type words, without the possibility of modeling the190

semantics represented by the words or sequences of words.191

In this context, and contrary to all the mentioned approaches, SAIRUS192

is able to analyze both the semantics of the content and the topology of the193

network in which the user is involved. Furthermore, SAIRUS explicitly considers194

the spatial closeness among the users involved in the network, allowing to classify195

them more accurately. As far as we know, no existing method has considered the196

spatial dimension, together with the user-generated content and relationships,197

when accomplishing this task.198

2.2. Spatially-aware methods for network data199

The spread of spatial and geo-referenced data renewed and incentivized the200

interest towards Geographic Information Systems (GIS) [54], spatial data analy-201

sis [55] and spatial data mining [56]. The latter refers to the process of discover-202

ing useful and previously unknown patterns from spatial databases [57, 58]. Due203

to the exploitation of the spatial dimension of social networks, this paper also204

contributes to these fields. In the following, we briefly discuss existing methods205

that attempted to consider the spatial dimension.206

In [59] the authors identify spatial regions with a higher risk of infection by207

Dengue disease, training two probabilistic models from Twitter data generated208

by users located in two Brazilian cities. The considered data include tweets and209

users GPS positions, through which the authors detected individuals who had210

a personal experience with the disease. Then, they reconstructed the position211

history of each user to identify spatial clusters and to highlight those with a212

higher infection risk.213

Similar approaches have been proposed to detect risky spatial clusters based214

on criminal events [60] or traffic accidents [61], although they do not exploit215

spatial data extracted from social networks. In [62], the authors proved the216

effectiveness of a multidimensional analysis when investigating the spread of217

extreme weather events, like El Niño. They analyzed the risk perception of218

the storm reaching the US West Coast, showing that considering the spatial219
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dimension could help in answering questions about the climate changes, and to220

provide insights about discussions on Twitter.221

In the literature, we can also find some attempts to exploit spatial data222

for the detection of terrorists on social networks. A very simple approach is223

proposed in [50], where the authors use the presence of geo-tagged tweets as224

a feature, assuming that malicious users are less likely to share their location225

to remain hidden. Although simple and interesting, this approach, due to its226

basic assumptions, may lead to an excessive amount of false positives. Among227

more complex approaches, in [63] the authors performed an analysis of a ter-228

rorist social network, focusing on the geographical information which could be229

exploited to provide insights into the structure and the dynamics of the network.230

In particular, they show how this kind of data could help in identifying terrorist231

operational cells, along with their bases and their support facilities.232

In summary, although few preliminary attempts have been made to ex-233

ploit the spatial dimension in the analysis of (social) network data, the method234

SAIRUS presented in this paper can be considered the first that explicitly mod-235

els the spatial relationships among the users to possibly improve the key-player236

identification task, and specifically the classification of users as risky or safe.237

3. The proposed method SAIRUS238

Before explaining in details the approach followed by the proposed method
SAIRUS, we first formalize some key aspects. First, we formalize a social net-
work as a 4-tuple as follows:

⟨N,C,EC , ET ⟩ (1)

where:239

• N = NL ∪ NU (NL ∩ NU = ∅) is the set of users, either labeled (NL) or240

unlabeled (NU ). Each labeled user is associated with the category safe or241

risky, thus implicitly defining two subsets of labeled users N
(s)
L and N

(r)
L ,242

such that NL = N
(s)
L ∪N

(r)
L (N

(s)
L ∩N

(r)
L = ∅).243

• C is the set of textual documents produced by users, that is, the posts.244

Each document c ∈ C is associated with a timestamp and a geographical245

location.246

• EC ⊆ N × C represents the relationships between users and textual con-247

tents, i.e., the action performed by a user in generating/posting a given248

textual content.249

• ET ⊆ N × N represents the topology of the network established by a250

possible social relationship between users, e.g., follows.251

It is worth noting that, based on the data available during the training phase,252

the task of node classification in network data can be solved in two different253

7



settings: (semi-supervised) inductive setting [64] or semi-supervised transduc-254

tive [65] setting. The former, also know as across-network classification, takes255

advantage of a model learned from a (fully or partially) labeled network to256

classify nodes in an unseen, unlabeled network. In the latter setting, which is257

also know as within-network classification, the model is learned from a network258

containing both labeled and unlabeled nodes, and the goal is to classify specifi-259

cally the set of unlabeled nodes observed at training time, which is the common260

situation in social networks. Since SAIRUS classifies users in NU , based on261

information learned from the whole set of users in N , it naturally falls into the262

category of semi-supervised transductive learning approaches.263

We want to stress that SAIRUS solves this classification task by exploiting264

not only the topology of the network established by the relationships between265

labeled and unlabeled users, but also the textual content of their posts and the266

spatial closeness among users estimated on the basis of the locations associated267

with their posts.268

As depicted in Figure 1, SAIRUS consists of four main stages: i) seman-269

tic content analysis of the textual documents produced by users, ii) topology270

network analysis on the user relationships, iii) analysis of the spatial closeness271

among users, iv) model fusion. SAIRUS exploits a stacked generalization ap-272

proach to “learn to combine” the contribution coming from all the considered273

perspectives. On the contrary, as pointed out in Section 2.1, existing hybrid274

methods exhibit relevant limitations, such as: i) they exploit only few (and275

weak) spatial features (see [63]), or they do not consider the spatial dimension276

at all; ii) they only take into account simple topological features (see [49, 66]);277

or iii) user relationships are totally discarded (see [50]).278

In the following subsections, we briefly describe each of the main stages279

performed by the components of SAIRUS.280

3.1. Semantic analysis of the textual content281

The aim of this component is to analyze the textual content (e.g., posts,282

tweets, comments, etc.) generated by users, and categorize unlabeled users as283

safe or risky accordingly. The input of this component consists of the set of tex-284

tual documents C and the set of relationships EC representing the link between285

users and the textual documents they posted/published. SAIRUS first applies286

some common Natural Language Processing (NLP) pre-processing steps [67] on287

the textual documents, namely tokenization, stopword removal and stemming.288

Subsequently, for each user, SAIRUS concatenates all the pre-processed docu-289

ments posted by such a user. Note that the temporal order of the initial textual290

documents is considered during the concatenation, implicitly allowing SAIRUS291

to take into account the temporal evolution of the topics discussed by the user.292

This is an important aspect since the behavior of the users can be subject to a293

drift over time.294

Before training a classifier, we need to represent users according to the
textual content they posted, namely, as feature vectors representing the se-
mantics of the textual content in a latent feature space. For this purpose, we
adopt the well-established word-embedding method Word2Vec [39]. Specifically,
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Figure 1: On overview of the SAIRUS architecture.

Word2Vec is able to represent each single word as a kc-dimensional real-valued
vector. To compute an embedding associated with the user, we rely on the
additive compositionality property of word embeddings [68], which states that
the meaning of the words can be composed by adding up their embeddings.
More formally, given words(u), the list of words appearing in the textual con-
tent posted by the user u, and w2v(w), the embedding generated by Word2Vec
for the word w, then the semantic vector representation sem(u) for each user
u ∈ N is calculated as:

sem(u) =
∑

w∈words(u)

w2v(w). (2)

In SAIRUS, other word and document embedding techniques may be plugged295
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in, such as BERT [69]. However, we decided to avoid the adoption of BERT in296

SAIRUS due to its limitations in processing sequences of words longer than 512297

tokens, that can be easily reached in our scenario. Through the word embedding298

phase, we obtain a new dataset T ′ ∈ R|N |×kc , which consists of the semantics-299

based kc-dimensional feature vector representation for all the users N .300

In order to properly learn a classification model from such a dataset, we recall301

that users N can be labeled as risky (N
(r)
L ), labeled as safe (N

(s)
L ) or unlabeled302

(NU ). In this phase, we focus only on labeled users and learn two different303

one-class classifiers (one for each class) based on stacked autoencoders [70]. Au-304

toencoders are popular neural networks exhibiting a funnel-shaped structure,305

that aims to learn a latent representation of the data such that the input is306

accurately reconstructed in the output layer. They exhibit state-of-the-art per-307

formances in classification tasks based on textual content [71, 72], being able to308

catch the semantics from the latent learned space, and have been successfully309

been applied also in anomaly detection [73, 74] and embedding [75, 76] tasks.310

Formally, each autoencoder aims at learning an encoding function ẽn : X → X ′

and a decoding function d̃c : X ′ → X , such that:

⟨ẽn, d̃c⟩ = argmin
⟨en,dc⟩

∥T ′ − dc(ec(T ′))∥2, (3)

where X is the input space (i.e., Rkc), and X ′ is the learned encoding space.311

The architecture of an autoencoder consists of two main parts, associated312

with the encoding and the decoding stages, that are fully connected feedforward313

neural networks, with the same number of hidden layers arranged so that their314

architectures are mirrored. The central layer, called embedding or bottleneck315

layer, has an arbitrary dimension, usually smaller than the input layer, and316

represents the embedding space. Figure 2 shows the autoencoder architecture317

adopted in SAIRUS, with two hidden layers for each part.318

Figure 2: A graphical representation of the autoencoder architecture adopted in SAIRUS for
semantic content analysis: three encoding stages and three decoding stages, that aggregate
and reconstruct, respectively, the semantic representation of each user.
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As previously mentioned, we build two separate autoencoders, one for each319

category of users. More formally, we train the autoencoder AR from the vector320

representation of labeled risky users N
(r)
L , and the autoencoder AS from the321

vector representation of labeled safe users N
(s)
L . Given an unlabeled user u ∈322

NU , we feed both the autoencoders AS and AR with his/her corresponding323

vector representation sem(u), and compute the respective reconstruction errors324

AS(u) and AR(u). Therefore, the output of the semantic analysis of the textual325

content for a user u ∈ NU can be considered threefold:326

• the reconstruction error AS(u) achieved by the autoencoder AS;327

• the reconstruction error AR(u) achieved by the autoencoder AR;328

• the predicted label pc ∈ {S,R} (safe or risky), computed according to the329

minimum error achieved by AS and AR.330

We stress the fact that this component specifically focuses on the semantic331

analysis of the textual content. On the other hand, the aspects related to the332

topology of the network of relationships are captured by a specific component,333

that will be described in the following subsection.334

3.2. Analysis of the network of relationships335

The most straightforward approach to take into account the network of re-336

lationships among users consists in the analysis of an adjacency matrix A ∈337

R|N |×|N |, where Aij = 1 if (ui, uj) ∈ EN , Aij = 0 otherwise, and ui and uj are338

the i-th and the j-th user of the network, respectively. However, the direct anal-339

ysis of adjacency matrices through machine learning approaches usually suffers340

from issues arising from high dimensionality and sparseness. This is due to the341

large number of users in a social network, each of which naturally establishes342

relationships only with a few other users. For example, looking at the Facebook343

Results Report for Second Quarter 20211, the social network had over 1.9 billion344

of active daily users in June 2021, which would led to an adjacency matrix with345

over 3 × 1018 cells. Considering the maximum allowed number of friendships346

(5000), this matrix would be very sparse (sparsity > 99.999%).347

This is a well-known issue in the literature and there are many solutions rely-348

ing on dimensionality reduction techniques, including Singular Value Decompo-349

sition (SVD) [77], Principal Component Analysis (PCA) [78] and Non-negative350

Matrix Factorization (NMF) [79], which solve the problem of low-rank matrix351

approximation, dealing with sparse data and facilitating the exploitation of la-352

tent information. There are also other approaches based on autoencoders [80],353

or that do not work on the adjacency matrix, but rather on the network itself. A354

relevant example is Node2Vec [81], which exploits random walks and the word355

embedding method Word2Vec, to construct node embeddings of a predefined356

1https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-
Second-Quarter-2021-Results/
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dimension. It has also been proved that these methods support the modeling of357

communities and of the roles of the users in the community.358

SAIRUS is able to work directly on the adjacency matrix A ∈ R|N |×|N |, or359

on the resulting matrix A′ ∈ R|N |×kr obtained by the application of the PCA,360

autoencoder or Node2Vec, where kr is a user-defined parameter. Note that any361

additional dimensionality reduction technique may be easily pluggable in the362

SAIRUS workflow. Subsequently, SAIRUS trains a node classification model363

from the whole set of labeled users NL. In this case, although the classifier is364

trained from labeled users only, their embedding is constructed also considering365

their relationships with unlabeled users. This is coherent with the transductive366

semi-supervised learning setting.367

For this phase we adopt tree-based classifiers because they generally exhibit368

state-of-the-art performances on classification tasks in the semi-supervised set-369

ting [82], also from network data [64]. Tree-based models are predictive models370

that are well known for their interpretability, their ability to handle both numer-371

ical and categorical data, as well as to capture non-linearities. Often exploited372

in multi-class classification scenarios, the learned decision trees consist of nodes373

and branches. They are usually learned through top-down induction approaches,374

that recursively partition the set of observations. Each node considers a specific375

feature and a value/threshold, according to which the observations are parti-376

tioned. In the leaf nodes, we can find the predicted labels (for classification377

tasks) or numerical values (for regression tasks). Each split is greedily deter-378

mined by maximizing some heuristics. In particular, the decision tree learned379

by SAIRUS maximizes the reduction of the classical Gini Index [83], that is380

based on the purity of each class after applying the split. In our case, the Gini381

Index is defined as Gini(n) = 1 − (p2s + p2r), where ps and pr are the relative382

frequencies of safe and risky users in the tree node n, respectively.383

During the prediction phase, given an unlabeled user u ∈ NU , the decision384

tree built by SAIRUS provides the predicted label pR(u) and a confidence value385

cR(u). The confidence value associated with a given unlabeled user is based on386

the purity, computed on the training examples associated with the leaf node in387

which u falls. Both the predicted label pR(u) and the confidence value cR(u)388

are then exploited in the model fusion phase (see Figure 1).389

3.3. Spatial analysis390

In this subsection, we describe the approach we adopt to specifically take391

into account the spatial dimension. We first build a network represented as a392

weighted adjacency matrix S ∈ R|N |×|N |, where Sij = closeness(ui, uj) corre-393

sponds to the spatial closeness between the user ui and the user uj . The func-394

tion closeness(ui, uj) is computed by exploiting the geodetic distance d(ui, uj)395

between the geographical locations of the user ui and of the user uj . We approx-396

imate the geographical location of a given user as the mode of the geographical397

locations associated to his/her posts. The adoption of the mode, instead of other398

aggregation functions (such as the centroid) is motivated by its capability of i)399

associating the most relevant position to the user, discarding sporadic changes400

due to occasional travels; ii) returning a location in which such a user has really401
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been located, rather than a synthetic average position which potentially may402

not represent a real possible location.403

More formally, the geodetic distance relies on the Law of Haversines [84],
that can determine the distance between two points on a sphere, given their
latitudes and longitudes. Therefore, given two users u1, u2, their latitudes φ1, φ2

and their longitudes λ1, λ2, d(ui, uj) is computed as:

d(ui, uj) = 2r · arctan
√
a√

1− a
(4)

where r is the average earth radius (r ≈ 6,371 km) and a = sin2(φ2−φ1

2 ) +404

cos(φ1) · cos(φ2) · sin2(λ2−λ1

2 ) is the Haversine Formula.405

Subsequently, we standardize the distance d(ui, uj), using the z-score normal-
ization, as follows:

z(ui, uj) =
d(ui, uj)− µ

d

σ
d

(5)

where µ
d
and σ

d
are the mean and the standard deviation, respectively, of the406

distances between two users.407

We adopt z-standardization since it allows us to easily identify two main
groups: users who are spatially closer than the average (i.e., z(ui, uj) < 0), and
users who are spatially more distant than the average (i.e., z(ui, uj) ≥ 0). Since
we explicitly interested in representing the spatial closeness among users, we
compute closeness(ui, uj) as follows:

closeness(ui, uj) =


z(ui, uj)

minz
, if z(ui, uj) < 0

0, otherwise

(6)

where minz is the minimum of the normalized distances between two users.408

Note that we further normalize z(ui, uj) over minz in order to obtain a value409

in the range [0, 1], where 0 means that the users ui and uj are very far from410

each other (actually, more than the average) and 1 means that ui and uj are411

located precisely at the same location.412

Once the matrix S has been computed, analogously to the approach fol-413

lowed for the analysis of the network of relationships, we apply a dimensionality414

reduction technique, obtaining the reduced matrix S′ ∈ R|N |×ks , where ks is415

a user-defined parameter. Finally, we train a node classification model on the416

labeled users NL. Coherently with the case of the network of relationships, also417

in this case, we adopt a decision tree learner based on the Gini index, that, given418

an unlabeled user u ∈ NU , returns the predicted label pS(u) and the confidence419

value cS(u), according to the spatial dimension.420

3.4. Model fusion421

The goal of the final stage is to combine the output of the different models422

learned from the textual content, from the network of relationships and from the423

spatial dimension, to get the final classification for each unlabeled user u ∈ NU .424
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In SAIRUS, we perform this step by learning a model for combining the output425

of such models. This is done by resorting to a Multi-Layer Perceptron (MLP)426

used in a Stacked Generalization fashion [22]. MLP is a feedforward Artificial427

Neural Network (ANN) composed by an input layer, multiple hidden layers and428

an output layer, where the training occurs by iteratively updating the weights429

of the network through backpropagation [85].430

The input layer of the adopted MLP consists of 7 neurons, that take as431

inputs, for a given user u: i) the reconstruction error of the safe autoencoder432

AS(u) and of the risky autoencoder AR(u), as well as the predicted label pc(u),433

obtained by the component for the semantic analysis of the textual content;434

ii) the predicted label pR(u) and the confidence value cR(u) obtained from the435

component for the analysis of the network of relationships; iii) the predicted436

label pS(u) and the confidence value cS(u) obtained from the component for437

the spatial analysis.438

Formally, the final label l(u) for a given unlabeled user u is computed as:

l(u) = MLP (AS(u), AR(u), pc(u), pR(u), cR(u), pS(u), cS(u)) (7)

The adopted MLP architecture is shown in the bottom part of Figure 1. In439

the hidden layer we adopt the sigmoid activation function, since it allows to440

capture possible nonlinear dependencies occurring between input and output441

variables. On the other hand, the output layer exploits the softmax activation442

function. This choice is motivated by its well-known ability of dealing with clas-443

sification tasks, since it predicts a multinomial probability distribution which is444

then leveraged to select the final class, according to the highest probability. Co-445

herently, the class attribute for training examples is subject to one-hot-encoding446

[86], so that ⟨1, 0⟩ in the output neurons represents that the user is safe, while447

⟨0, 1⟩ in the output neurons represents that the user is risky.448

Coherently, the implemented MLP exploits the log loss function, that has449

shown to be effective for binary classification tasks [87]. Specifically, the log450

loss function measures how much the prediction probability is close to the cor-451

responding true value.452

We stress the fact that our approach, based on the stacked generalization453

framework, learns how to combine the outputs of three different models, without454

any user-defined criteria. Moreover, since it is not based on ensemble techniques,455

that would solely rely on the predictions pC(u), pR(u) and pS(u), SAIRUS is456

able to consider additional features, such as the reconstruction errors AS(u)457

and AR(u) and the prediction confidence cR(u) and cS(u).458

4. Experiments459

In the following subsections, we first describe the dataset considered in the460

evaluation of the performance achieved by SAIRUS. Then, we outline the ex-461

perimental setting and describe the considered competitors. Finally, we show462

and discuss the obtained results.463
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4.1. Datasets464

For the evaluation of the SAIRUS performances, we adopted a real-world465

Twitter dataset2, retrieved through a compliant crawling system, and by re-466

lying on the Conditional Independence Coupling (CIC) algorithm to obtain a467

representative sample of users, with no specific hashtag, from the United States.468

Each tweet is associated with a sentiment score, i.e., an integer value which469

represents its polarity, computed through Stanford CoreNLP Toolkit [88], and470

manually revised by 3 domain experts.471

The ground truth for the user label (i.e., risky or safe) has been built fol-472

lowing two different strategies:473

• Keywords. We mark a tweet as risky if it contains at least one of the474

keywords appearing in two manually curated lists, related to terrorism475

and threats3, and to hate against immigrants and women4. We compute476

a score for each user as the ratio between the number of tweets marked477

as risky and the total number of tweets, assuming that users who post478

the majority of tweets containing words related to terrorism, threats and479

hate, are more likely to be risky.480

• Sentiment. We assign a score to each user, computed as the sum of the481

sentiment score of their tweets. In this case, the main assumption is that482

users who post multiple tweets with a negative sentiment are more likely483

to be risky.484

In both cases, we sort users according to their score and let three expert re-485

viewers perform a manual inspection of their tweets, focusing on the top and486

on the bottom of the sorted list. Accordingly, a selection of the safest and of487

the riskiest users was performed. This process ensures the correctness of the488

labeling procedure, avoiding incorrect labels in the ground truth (more likely489

occurring for users in the middle of the list) that would have possibly led to490

misleading conclusions in the performance evaluation.491

We performed an additional operation to inject noisy data under controlled492

conditions. Specifically, we injected borderline users who, in this case, may493

correspond to journalists who share negative textual contents for informative494

purposes, but are mainly connected with safe users. Specifically, risky users495

showing the majority of their neighbors in the network labeled as safe were496

considered as borderline and relabeled as safe. Finally, we removed users not497

connected with any other users. The quantitative characteristics of the obtained498

datasets are summarized in Table 1.499

2According to the Twitter policies, the dataset cannot be publicly shared, but can be
provided for research and reproducibility purposes upon request.

3https://www.dailymail.co.uk/news/article-2150281/
4https://github.com/msang/hateval
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Table 1: Quantitative characteristics of the datasets based on Keywords and on Sentiment

Keywords Sentiment
Safe Users 1467 1470
Risky Users 2241 1033

Borderline Users 263 304
Tweets 7,686,231 10,016,749

4.2. Experimental setting and competitors500

We evaluated the results obtained by SAIRUS with different dimensional-501

ity reduction techniques. Specifically, we adopted PCA [78], Node2Vec [81]502

and Autoencoders bottleneck encodings [80]. We also evaluated the results ob-503

tained with different values for the embedding dimensionality, namely kc, for504

the semantic analysis of the textual content, kr, for the analysis of the network505

of relationships, and ks for the spatial analysis. Specifically, after performing506

some preliminary evaluations, we selected the following combinations of such507

parameters to perform the complete experiments: ⟨kc=128, kr=256, ks=256⟩,508

⟨kc=256, kr=128, ks=128⟩, and ⟨kc=512, kr=128, ks=128⟩.509

The results obtained by SAIRUS were compared with those achieved by sev-510

eral competitors. Specifically, we evaluated the performance achieved by a clas-511

sifier based on Random Forests (RF) with 100 trees, by optimizing the minimal512

cost-complexity pruning parameter α in {0.0, 0.2, 0.5, 1.0, 2.0}. Moreover, for513

the content-based analysis (coherently with the approach followed by SAIRUS),514

we also adopted two one-class classifiers based on autoencoders (1C-AEs).515

The models were trained starting from different sets of features, each exploit-516

ing one, namely content (C), relationships (R) or spatial (S), or more (C+R,517

C+S, R+S, and C+R+S) perspectives. When more than one perspective was518

considered, we built the feature set as the concatenation of the feature sets519

associated with each single perspective. As state-of-the-art systems to build520

the feature set from the textual content, we considered Word2Vec (w2v) [39]521

and Doc2Vec (d2v) [15]. In this case, coherently with the setting adopted for522

SAIRUS, we set their embedding dimensionality to the same value adopted for523

kc. On the other hand, in order to learn a feature representation from the524

network of relationships and from the spatial closeness network, we adopted525

the system Node2Vec (n2v) [81]. Also in this case, coherently with the set-526

ting adopted for SAIRUS, the embedding dimensionality was set to kr and ks,527

respectively. Overall, we compared SAIRUS with 13 competitors (see Table 2).528

All the experiments were carried out on a server equipped with a Xeon CPU529

E5-1650-v3 and 64 GB of RAM. We adopted a stratified 5-fold cross-validation,530

randomly partitioning the users into 5 folds and alternatively selecting one fold531

as testing set (NU ) and the remaining 4 folds as training set (NL). The adopted532

stratification allowed us to preserve the ratio of safe and risky users, as well as533

the ratio of bordeline users within safe users. As evaluation measures, we used534

precision, recall, F1-Score, and accuracy, considering the risky label as positive535

class. We also evaluated such measures on the borderline users, with the purpose536

of assessing the effectiveness of the methods when dealing with noisy data.537
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Table 2: Summary of the considered competitors.

Classifier C R S
1C-AEs ✓(d2v)
1C-AEs ✓(w2v)

RF ✓(d2v)
RF ✓(w2v)
RF ✓

RF ✓

RF ✓(d2v) ✓

RF ✓(w2v) ✓

RF ✓(d2v) ✓

RF ✓(w2v) ✓

RF ✓ ✓

RF ✓(d2v) ✓ ✓

RF ✓(w2v) ✓ ✓

4.3. Results and discussion538

In Tables 3-5 and 6-8, we show the results obtained on the sentiment dataset539

and on the keywords dataset, respectively, where we emphasize (in bold, with540

gray background) the best result obtained for a given evaluation measure (col-541

umn of the table). We start our discussion by looking at the results obtained by542

the competitors. Focusing on the solutions solely based on the textual content,543

we can observe that the adoption of w2v generally leads to better results with544

respect to d2v. Although d2v is able to directly represent whole documents by545

introducing a unique document id instead of aggregating the word embeddings546

[15], the superiority of w2v has been already shown in several contexts (see,547

for example, [89]), mainly due to its ability of modeling different topics spread548

over different paragraphs, that generally reduces overfitting issues. As regards549

the classifiers, we can see that RF and 1C-AEs lead to comparable results, with550

no solution clearly dominating the other. The adoption of features related to551

user relationships (R) or to the spatial dimension (S) does not seem to provide552

a clear contribution to competitors. Indeed, none of the more complex feature553

sets led to higher values for F1-score or accuracy than the one solely based on554

the textual content. This result confirms that simply injecting features coming555

from one perspective into the other could also compromise the results due to556

the possible introduction of issues related to the course of dimensionality. The557

situation slightly changes when looking at the borderline users. Indeed, in this558

case, the contribution coming from the features based on user relationships sup-559

port the competitors in making more informed predictions about this kind of560

users. This situation appears coherent along the different values adopted for kc,561

kr and ks, as well as over the two different considered datasets.562

On the other hand, looking at the performance exhibited by SAIRUS, we can563

immediately notice that the best results are obtained when the network of user564

relationships or the spatial dimension (or both) is exploited. This aspect is more565

evident on the dataset sentiment, where the achieved F1-score, when both user566

relationships and the spatial analysis are considered, is ∼ 0.8. This confirms567

that the approach adopted by SAIRUS to fuse the contribution coming from568
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multiple perspectives is much more effective than the concatenation of features.569

In the dataset based on keywords, we can observe a more balanced situation,570

where the configuration that exploits the textual content and the spatial analysis571

C+S slightly emerges as the best one, with comparable results obtained by the572

C+R configuration. These results confirm the relevance of the spatial perspec-573

tive, as well as the importance of properly modeling and exploiting it through574

a smart fusion strategy. Similar conclusions can be drawn for the borderline575

users (i.e., journalists). Indeed, independently from the embedding dimensions576

and the chosen network representation, the best results are obtained when the577

spatial dimension is considered.578

Focusing on the embedding parameters (kc, kr and ks), it appears that579

adopting a wider feature vector for the textual content (kc) provides benefits in580

terms of F1-score. This is also confirmed by the overall best results achieved in581

the setting ⟨kc=512, kr=128, ks=128⟩. As regards the dimensionality reduction,582

PCA and Autoencoders led to the best results with an average F1-score of ∼ 0.7.583

A deeper analysis of the influence of the considered perspectives, of the584

embedding parameters, and of the strategy adopted to reduce the dimensionality585

of the adjacency matrices can be done by observing Figure 3. From this figure,586

we can easily conclude that considering both the network of user relationships587

and the spatial dimension generally leads to the best results. Moreover, as588

already mentioned, the highest value for kc, namely kc = 512, led to the best589

results, while the best value for kr and ks appears to be the lowest among the590

considered ones (i.e., 128). These results can be motivated by the richness and591

heterogeneity of the topics of the tweets, that need a higher dimensionality of592

the feature space to be properly represented. On the other hand, the network593

of relationships and of spatial closeness are quite sparse, and a low-dimension594

feature space appears to be adequate. As for the strategy adopted to reduce the595

dimensionality, the autoencoder appears to be the clear winner, with general596

better results and a significantly lower variance.597

The results achieved by SAIRUS, when compared to those obtained by com-598

petitors, are much higher, according to all the evaluation measures, on both599

the considered datasets. This is true both when analyzing the whole set of600

users and when focusing on borderline users, and emphasizes the capability of601

SAIRUS of being robust to noisy users, while keeping a generally high predic-602

tive accuracy. This is clearly due to the hybrid approach we adopt where every603

perspective can be used to provide confirmations on what predicted by other604

perspectives. Moreover, the ability of fruitfully capturing the information con-605

veyed by the network of relationships and by the spatial closeness among users606

makes SAIRUS a state-of-the-art tool to properly distinguish between risky and607

safe users in a social network, and envisages its adoption to properly exploit the608

massive amount of data currently generated from geo-located mobile devices.609
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Table 3: Results on the sentiment dataset, with kc = 128, kr = 256, ks = 256

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.557 0.565 0.540 0.563 0.500 0.233 0.317 0.467
1C-AEs ✓(w2v) 0.650 0.646 0.666 0.648 0.500 0.132 0.207 0.263

RF ✓(d2v) 0.500 0.450 0.473 0.600 0.575 0.526 0.492 0.677
RF ✓(w2v) 0.687 0.686 0.686 0.686 0.500 0.179 0.263 0.358
RF ✓ 0.503 0.501 0.473 0.642 0.500 0.455 0.476 0.910
RF ✓ 0.478 0.494 0.450 0.647 0.500 0.463 0.481 0.927
RF ✓(d2v) ✓ 0.568 0.509 0.441 0.681 0.600 0.583 0.591 0.967
RF ✓(w2v) ✓ 0.681 0.680 0.680 0.680 0.500 0.146 0.225 0.292
RF ✓(d2v) ✓ 0.515 0.508 0.491 0.635 0.500 0.423 0.458 0.847
RF ✓(w2v) ✓ 0.602 0.602 0.602 0.602 0.500 0.198 0.283 0.396
RF ✓ ✓ 0.502 0.501 0.480 0.632 0.500 0.437 0.466 0.873
RF ✓(d2v) ✓ ✓ 0.514 0.506 0.480 0.645 0.500 0.422 0.456 0.843
RF ✓(w2v) ✓ ✓ 0.607 0.607 0.607 0.607 0.500 0.179 0.263 0.358

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.591 0.723 0.643 0.723 1.000 0.943 0.970 0.943
✓ ✓ 0.657 0.748 0.690 0.748 1.000 0.953 0.976 0.953

✓ ✓ 0.773 0.781 0.772 0.781 1.000 0.820 0.900 0.820
✓ ✓ ✓ 0.720 0.766 0.727 0.766 1.000 0.977 0.988 0.977

Node2vec

✓ ✓ 0.671 0.756 0.704 0.756 1.000 0.847 0.912 0.847
✓ ✓ 0.603 0.718 0.643 0.718 1.000 0.967 0.983 0.967

✓ ✓ 0.761 0.757 0.758 0.757 1.000 0.690 0.816 0.690
✓ ✓ ✓ 0.611 0.741 0.660 0.741 1.000 0.960 0.978 0.960

PCA

✓ ✓ 0.671 0.759 0.703 0.759 1.000 0.900 0.945 0.900
✓ ✓ 0.514 0.648 0.568 0.648 1.000 0.973 0.986 0.973

✓ ✓ 0.785 0.791 0.784 0.791 1.000 0.857 0.922 0.857
✓ ✓ ✓ 0.743 0.740 0.695 0.740 1.000 0.980 0.990 0.980

None

✓ ✓ 0.735 0.749 0.686 0.749 1.000 0.970 0.984 0.970
✓ ✓ 0.576 0.625 0.596 0.625 1.000 0.937 0.967 0.937

✓ ✓ 0.793 0.768 0.727 0.768 1.000 0.950 0.974 0.950
✓ ✓ ✓ 0.711 0.707 0.664 0.707 1.000 0.907 0.946 0.907

Table 4: Results on the sentiment dataset, with kc = 256, kr = 128, ks = 128

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.564 0.568 0.557 0.595 0.500 0.277 0.351 0.553
1C-AEs ✓(w2v) 0.699 0.671 0.682 0.720 0.500 0.202 0.285 0.403

RF ✓(d2v) 0.577 0.530 0.502 0.676 0.500 0.437 0.466 0.873
RF ✓(w2v) 0.687 0.686 0.686 0.686 0.500 0.165 0.248 0.331
RF ✓ 0.508 0.504 0.474 0.646 0.500 0.445 0.471 0.890
RF ✓ 0.498 0.499 0.464 0.645 0.500 0.458 0.478 0.917
RF ✓(d2v) ✓ 0.500 0.462 0.480 0.623 0.580 0.518 0.466 0.681
RF ✓(w2v) ✓ 0.681 0.680 0.680 0.680 0.500 0.146 0.225 0.292
RF ✓(d2v) ✓ 0.540 0.523 0.509 0.649 0.500 0.430 0.462 0.860
RF ✓(w2v) ✓ 0.602 0.602 0.602 0.602 0.500 0.198 0.283 0.396
RF ✓ ✓ 0.503 0.502 0.479 0.636 0.500 0.430 0.462 0.860
RF ✓(d2v) ✓ ✓ 0.530 0.515 0.491 0.652 0.500 0.432 0.463 0.863
RF ✓(w2v) ✓ ✓ 0.607 0.607 0.607 0.607 0.500 0.179 0.263 0.358

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.720 0.747 0.692 0.747 1.000 0.910 0.951 0.910
✓ ✓ 0.688 0.767 0.713 0.767 1.000 0.800 0.814 0.800

✓ ✓ 0.776 0.783 0.776 0.783 1.000 0.853 0.920 0.853
✓ ✓ ✓ 0.667 0.755 0.695 0.755 1.000 0.980 0.990 0.980

Node2vec

✓ ✓ 0.644 0.710 0.634 0.710 1.000 0.897 0.940 0.897
✓ ✓ 0.591 0.719 0.643 0.719 1.000 0.973 0.986 0.973

✓ ✓ 0.754 0.755 0.754 0.755 1.000 0.763 0.865 0.763
✓ ✓ ✓ 0.759 0.801 0.767 0.801 1.000 0.943 0.969 0.943

PCA

✓ ✓ 0.725 0.752 0.697 0.752 1.000 0.917 0.955 0.917
✓ ✓ 0.593 0.694 0.619 0.694 1.000 0.773 0.803 0.773

✓ ✓ 0.786 0.793 0.785 0.793 1.000 0.860 0.924 0.860
✓ ✓ ✓ 0.711 0.702 0.682 0.702 1.000 0.923 0.958 0.923

None

✓ ✓ 0.742 0.770 0.720 0.770 1.000 0.837 0.884 0.837
✓ ✓ 0.550 0.639 0.586 0.639 1.000 0.960 0.979 0.960

✓ ✓ 0.784 0.768 0.727 0.768 1.000 0.950 0.974 0.950
✓ ✓ ✓ 0.711 0.702 0.682 0.702 1.000 0.923 0.958 0.923
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Table 5: Results on the sentiment dataset, with kc = 512, kr = 128, ks = 128

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.567 0.546 0.540 0.654 0.500 0.363 0.419 0.727
1C-AEs ✓(w2v) 0.612 0.604 0.605 0.635 0.500 0.155 0.233 0.310

RF ✓(d2v) 0.562 0.524 0.490 0.672 0.500 0.443 0.469 0.887
RF ✓(w2v) 0.687 0.686 0.686 0.686 0.500 0.165 0.248 0.331
RF ✓ 0.508 0.504 0.474 0.646 0.500 0.445 0.471 0.890
RF ✓ 0.498 0.499 0.464 0.645 0.500 0.458 0.478 0.917
RF ✓(d2v) ✓ 0.559 0.517 0.471 0.676 0.500 0.455 0.476 0.910
RF ✓(w2v) ✓ 0.681 0.680 0.680 0.680 0.500 0.146 0.225 0.292
RF ✓(d2v) ✓ 0.535 0.521 0.505 0.648 0.500 0.410 0.450 0.820
RF ✓(w2v) ✓ 0.602 0.602 0.602 0.602 0.500 0.198 0.283 0.396
RF ✓ ✓ 0.503 0.502 0.479 0.636 0.500 0.430 0.462 0.860
RF ✓(d2v) ✓ ✓ 0.539 0.519 0.498 0.653 0.500 0.428 0.461 0.857
RF ✓(w2v) ✓ ✓ 0.607 0.607 0.607 0.607 0.500 0.179 0.263 0.358

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.777 0.784 0.776 0.784 1.000 0.853 0.920 0.853
✓ ✓ 0.814 0.816 0.810 0.816 1.000 0.847 0.890 0.847

✓ ✓ 0.776 0.783 0.776 0.783 1.000 0.853 0.920 0.853
✓ ✓ ✓ 0.806 0.807 0.795 0.807 1.000 0.940 0.968 0.940

Node2vec

✓ ✓ 0.757 0.758 0.757 0.758 1.000 0.770 0.868 0.770
✓ ✓ 0.710 0.754 0.728 0.754 1.000 0.970 0.985 0.970

✓ ✓ 0.776 0.772 0.774 0.772 1.000 0.787 0.879 0.787
✓ ✓ ✓ 0.788 0.786 0.773 0.786 1.000 0.953 0.976 0.953

PCA

✓ ✓ 0.790 0.797 0.789 0.797 1.000 0.860 0.924 0.860
✓ ✓ 0.566 0.612 0.585 0.612 1.000 0.943 0.970 0.943

✓ ✓ 0.786 0.793 0.785 0.793 1.000 0.860 0.924 0.860
✓ ✓ ✓ 0.751 0.741 0.691 0.741 1.000 0.967 0.983 0.967

None

✓ ✓ 0.800 0.779 0.744 0.779 1.000 0.877 0.925 0.877
✓ ✓ 0.636 0.639 0.637 0.639 1.000 0.850 0.911 0.850

✓ ✓ 0.793 0.768 0.727 0.768 1.000 0.950 0.974 0.950
✓ ✓ ✓ 0.755 0.719 0.655 0.719 1.000 0.967 0.983 0.967

Table 6: Results on the keywords dataset, with kc = 128, kr = 256, ks = 256

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.547 0.546 0.544 0.546 0.500 0.219 0.298 0.438
1C-AEs ✓(w2v) 0.637 0.631 0.630 0.631 0.500 0.238 0.318 0.477

RF ✓(d2v) 0.559 0.559 0.559 0.559 0.500 0.215 0.297 0.431
RF ✓(w2v) 0.687 0.686 0.686 0.686 0.500 0.165 0.248 0.331
RF ✓ 0.496 0.496 0.494 0.496 0.500 0.254 0.337 0.508
RF ✓ 0.511 0.511 0.509 0.511 0.500 0.225 0.309 0.450
RF ✓(d2v) ✓ 0.567 0.567 0.566 0.567 0.500 0.221 0.303 0.442
RF ✓(w2v) ✓ 0.681 0.680 0.680 0.680 0.500 0.146 0.225 0.292
RF ✓(d2v) ✓ 0.544 0.544 0.543 0.544 0.500 0.231 0.313 0.462
RF ✓(w2v) ✓ 0.602 0.602 0.602 0.602 0.500 0.198 0.283 0.396
RF ✓ ✓ 0.489 0.490 0.488 0.489 0.500 0.256 0.338 0.512
RF ✓(d2v) ✓ ✓ 0.543 0.543 0.541 0.543 0.500 0.235 0.315 0.469
RF ✓(w2v) ✓ ✓ 0.623 0.623 0.623 0.623 0.500 0.173 0.233 0.347

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.599 0.862 0.696 0.616 0.600 0.419 0.493 0.419
✓ ✓ 0.620 0.870 0.711 0.636 0.600 0.569 0.584 0.569

✓ ✓ 0.667 0.766 0.713 0.691 1.000 0.700 0.822 0.700
✓ ✓ ✓ 0.632 0.858 0.711 0.641 0.600 0.538 0.565 0.538

Node2vec

✓ ✓ 0.608 0.794 0.668 0.605 0.600 0.404 0.482 0.404
✓ ✓ 0.657 0.824 0.708 0.648 0.600 0.492 0.538 0.492

✓ ✓ 0.689 0.676 0.682 0.685 1.000 0.596 0.746 0.596
✓ ✓ ✓ 0.717 0.684 0.677 0.672 0.800 0.669 0.721 0.669

PCA

✓ ✓ 0.618 0.867 0.709 0.633 0.600 0.462 0.522 0.462
✓ ✓ 0.528 0.693 0.577 0.525 0.600 0.546 0.572 0.546

✓ ✓ 0.687 0.776 0.729 0.711 1.000 0.746 0.854 0.746
✓ ✓ ✓ 0.682 0.661 0.645 0.646 0.800 0.727 0.760 0.727

None

✓ ✓ 0.749 0.568 0.526 0.578 0.600 0.565 0.582 0.565
✓ ✓ 0.543 0.696 0.585 0.537 0.600 0.527 0.561 0.527

✓ ✓ 0.892 0.317 0.468 0.665 1.000 0.938 0.968 0.953
✓ ✓ ✓ 0.666 0.424 0.443 0.562 0.800 0.781 0.790 0.781
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Table 7: Results on the keywords dataset, with kc = 256, kr = 128, ks = 128

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.552 0.551 0.547 0.551 0.500 0.204 0.284 0.408
1C-AEs ✓(w2v) 0.640 0.637 0.637 0.637 0.500 0.229 0.311 0.458

RF ✓(d2v) 0.568 0.568 0.568 0.568 0.500 0.237 0.321 0.473
RF ✓(w2v) 0.688 0.687 0.687 0.687 0.500 0.158 0.239 0.315
RF ✓ 0.478 0.478 0.476 0.478 0.500 0.273 0.353 0.546
RF ✓ 0.502 0.502 0.501 0.502 0.500 0.277 0.354 0.554
RF ✓(d2v) ✓ 0.565 0.565 0.564 0.565 0.500 0.202 0.285 0.404
RF ✓(w2v) ✓ 0.690 0.688 0.688 0.689 0.500 0.152 0.232 0.304
RF ✓(d2v) ✓ 0.561 0.560 0.558 0.560 0.500 0.244 0.326 0.488
RF ✓(w2v) ✓ 0.628 0.628 0.628 0.628 0.500 0.183 0.267 0.365
RF ✓ ✓ 0.487 0.487 0.487 0.487 0.500 0.254 0.336 0.508
RF ✓(d2v) ✓ ✓ 0.571 0.571 0.570 0.571 0.500 0.246 0.328 0.492
RF ✓(w2v) ✓ ✓ 0.646 0.646 0.646 0.646 0.500 0.175 0.258 0.350

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.637 0.812 0.706 0.657 0.800 0.558 0.656 0.558
✓ ✓ 0.657 0.808 0.715 0.672 0.800 0.758 0.778 0.758

✓ ✓ 0.673 0.774 0.720 0.698 1.000 0.700 0.822 0.700
✓ ✓ ✓ 0.730 0.732 0.731 0.730 1.000 0.919 0.957 0.919

Node2vec

✓ ✓ 0.649 0.761 0.689 0.654 0.800 0.454 0.578 0.454
✓ ✓ 0.681 0.747 0.698 0.672 0.800 0.750 0.774 0.750

✓ ✓ 0.701 0.672 0.686 0.692 1.000 0.677 0.807 0.677
✓ ✓ ✓ 0.579 0.505 0.533 0.649 1.000 0.835 0.895 0.835

PCA

✓ ✓ 0.652 0.811 0.713 0.668 0.800 0.635 0.708 0.635
✓ ✓ 0.595 0.684 0.623 0.598 0.800 0.619 0.686 0.619

✓ ✓ 0.692 0.777 0.731 0.714 1.000 0.785 0.879 0.785
✓ ✓ ✓ 0.553 0.534 0.525 0.635 1.000 0.869 0.926 0.869

None

✓ ✓ 0.822 0.546 0.572 0.652 0.800 0.619 0.670 0.619
✓ ✓ 0.539 0.711 0.593 0.539 0.600 0.531 0.563 0.531

✓ ✓ 0.916 0.295 0.445 0.633 1.000 0.942 0.970 0.942
✓ ✓ ✓ 0.859 0.446 0.504 0.625 1.000 0.796 0.804 0.796

Table 8: Results on the keywords dataset, with kc = 512, kr = 128, ks = 128

Configuration All users Bordeline
Classifier C R S Prec Rec F1 Acc Prec Rec F1 Acc

C
O
M

P
E
T
IT

O
R
S

1C-AEs ✓(d2v) 0.550 0.549 0.546 0.549 0.500 0.208 0.289 0.415
1C-AEs ✓(w2v) 0.635 0.630 0.629 0.630 0.500 0.231 0.311 0.462

RF ✓(d2v) 0.570 0.570 0.569 0.570 0.500 0.238 0.320 0.477
RF ✓(w2v) 0.689 0.688 0.688 0.688 0.500 0.158 0.238 0.315
RF ✓ 0.478 0.478 0.476 0.478 0.500 0.273 0.353 0.546
RF ✓ 0.502 0.502 0.501 0.502 0.500 0.277 0.354 0.554
RF ✓(d2v) ✓ 0.576 0.576 0.576 0.576 0.500 0.237 0.317 0.473
RF ✓(w2v) ✓ 0.689 0.687 0.687 0.687 0.500 0.146 0.225 0.292
RF ✓(d2v) ✓ 0.556 0.556 0.555 0.556 0.500 0.246 0.326 0.492
RF ✓(w2v) ✓ 0.650 0.650 0.650 0.650 0.500 0.177 0.260 0.354
RF ✓ ✓ 0.487 0.487 0.487 0.487 0.500 0.254 0.336 0.508
RF ✓(d2v) ✓ ✓ 0.557 0.557 0.556 0.557 0.500 0.223 0.302 0.446
RF ✓(w2v) ✓ ✓ 0.654 0.653 0.653 0.653 0.500 0.185 0.268 0.369

S
A
IR

U
S

D
im

e
n
s
io

n
a
li
ty

R
e
d
u
c
t
io

n AE

✓ ✓ 0.674 0.776 0.721 0.699 1.000 0.700 0.822 0.700
✓ ✓ 0.705 0.779 0.740 0.726 1.000 0.950 0.974 0.950

✓ ✓ 0.673 0.774 0.720 0.698 1.000 0.700 0.822 0.700
✓ ✓ ✓ 0.688 0.767 0.712 0.685 1.000 0.777 0.794 0.777

Node2vec

✓ ✓ 0.686 0.686 0.686 0.685 1.000 0.558 0.715 0.558
✓ ✓ 0.725 0.680 0.702 0.710 1.000 0.931 0.964 0.931

✓ ✓ 0.705 0.697 0.701 0.701 1.000 0.665 0.799 0.665
✓ ✓ ✓ 0.780 0.606 0.674 0.710 1.000 0.915 0.954 0.915

PCA

✓ ✓ 0.732 0.803 0.765 0.752 1.000 0.662 0.780 0.662
✓ ✓ 0.555 0.506 0.529 0.549 1.000 0.900 0.947 0.900

✓ ✓ 0.692 0.777 0.731 0.714 1.000 0.785 0.879 0.785
✓ ✓ ✓ 0.754 0.600 0.659 0.697 1.000 0.904 0.947 0.904

None

✓ ✓ 0.914 0.297 0.448 0.634 1.000 0.938 0.968 0.938
✓ ✓ 0.579 0.518 0.546 0.569 1.000 0.908 0.951 0.908

✓ ✓ 0.916 0.295 0.445 0.633 1.000 0.942 0.970 0.942
✓ ✓ ✓ 0.878 0.305 0.431 0.622 1.000 0.988 0.994 0.988
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(a) Sentiment dataset (b) Keywords dataset

Figure 3: Analysis of the influence of the considered perspectives, of the embedding parame-
ters, and of the strategy adopted to reduce the dimensionality of the adjacency matrices.
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5. Conclusion610

In this paper, we proposed a novel method for the identification of risky611

users in social networks, called SAIRUS. The proposed method falls in the cat-612

egory of hybrid approaches for node classification in network data, since it is613

able to fruitfully exploit and fuse the contribution of different perspectives of614

social network data. Specifically SAIRUS takes into account i) the semantics615

conveyed by the textual content posted by the users, ii) the network of user rela-616

tionships, and iii) the spatial closeness among users. To the best of the authors617

knowledge, this is the first approach that simultaneously takes into account all618

these dimensions of analysis. Moreover, contrary to existing methods, SAIRUS619

specifically exploits the peculiarities of each kind of data, without falling back620

into feature injection approaches.621

The performance obtained by SAIRUS was evaluated on two versions of a622

real-world Twitter dataset, and compared against 13 competitors that consider623

either one perspective at a time or a combination thereof. In all the situations,624

the results exhibited by SAIRUS demonstrated to be superior to all the consid-625

ered competitors, and very robust to the presence of noisy users, in terms of all626

the evaluation measures.627

Note that SAIRUS is also able to implicitly take into account the tempo-628

ral dimension related to the textual content, but currently cannot consider the629

dynamism of the network of relationships or the dynamism of the spatial close-630

ness among users. For future work, we will focus on making SAIRUS able to631

specifically capture these aspects, allowing it to detect users with a safe back-632

ground or history, who suddenly start to post negative contents, or join risky633

communities. We also plan to extend the framework to support the analysis of634

other types of unstructured content, such as images or videos. Finally, we will635

consider the design of a distributed version of SAIRUS implemented in Apache636

Spark, in order to make it able to analyze large scale networks.637
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predictive clustering trees, Data Mining and Knowledge Discovery 25 (2)828

(2012) 378–413.829

[65] C. Desrosiers, G. Karypis, Within-network classification using local struc-830

ture similarity, in: W. Buntine, M. Grobelnik, D. Mladenić, J. Shawe-831
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